d | ρ | Label | ID | ||
---|---|---|---|---|---|
C32×C39 | 351 | C3^2xC39 | 351,14 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
---|---|---|---|---|---|
C39⋊C32 = C32×C13⋊C3 | φ: C32/C3 → C3 ⊆ Aut C39 | 117 | C39:C3^2 | 351,13 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
---|---|---|---|---|---|
C39.1C32 = C9×C13⋊C3 | φ: C32/C3 → C3 ⊆ Aut C39 | 117 | 3 | C39.1C3^2 | 351,3 |
C39.2C32 = C117⋊C3 | φ: C32/C3 → C3 ⊆ Aut C39 | 117 | 3 | C39.2C3^2 | 351,4 |
C39.3C32 = C117⋊3C3 | φ: C32/C3 → C3 ⊆ Aut C39 | 117 | 3 | C39.3C3^2 | 351,5 |
C39.4C32 = C3×C13⋊C9 | φ: C32/C3 → C3 ⊆ Aut C39 | 351 | C39.4C3^2 | 351,6 | |
C39.5C32 = C39.C32 | φ: C32/C3 → C3 ⊆ Aut C39 | 117 | 3 | C39.5C3^2 | 351,7 |
C39.6C32 = C13⋊He3 | φ: C32/C3 → C3 ⊆ Aut C39 | 117 | 3 | C39.6C3^2 | 351,8 |
C39.7C32 = C13×He3 | central extension (φ=1) | 117 | 3 | C39.7C3^2 | 351,10 |
C39.8C32 = C13×3- 1+2 | central extension (φ=1) | 117 | 3 | C39.8C3^2 | 351,11 |